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ON AN EFFECTIYE ALGORITHM FOR MINIMIZING GENERALIZED TREFFTZ 
FUNCTIONALS OF LINEAR ELASTICITY THEORY* 

V. YA. TERBSBCHENKO 

The problem of minimizing the generalized Trefftz functionals of three- 
dimensional elasticity theory results in a minimax problem for the 
Lagrangian. An algorithm is proposed for searching for the saddle point 
in coordinate functions not subjected to any constraints in the domain 
and on the boundary (this is the efficiency of the algorithm). The 
convergence of the approximate solution is investigated. 

The Trefftz variational method /l/ is convenient for solving boundary 
value problemsof mathematical physics in that the dimensionality of the 
problem being solved is reduced because of its reduction to the solution 
of equations defined on the domain boundary. At the same time, when 
constructing the solution using the Ritz process, say, the coordinate 
functions should be selected so that they satisfy the differential equation 
of the boundary value problem in the domain, which is a serious constraint. 
An approach is proposed below that uses Lagrange multipliers to reduce this 
constraint when minimizing the generalized Trefftz functionals of the 
fundamental boundary vallle problems of linear elasticity theory. The 
results obtained can also be used to minimize the classical Trefftz 
functionals of the boundary value problems of mathematical physics /l/. 

Generalized Trefftz functionals were constructed in /2, 3/ for the 
fundamental problems of linear elasticity theory with continuous and 
discontinuous elasticity coefficients. The functionals are minimized in 
solutions (ordinary or generalized) for the linear equilibrium equation 
for an elastic medium in displacements. Assuming the existence of a 
coordinate system of functions satisfying the equilibrium equation (in 
the generalized sense) in /4/, the Ritz process was investigated for 
solving problems to minimize the generalized Trefftz functionals in an 
example of the second boundary value problem of three-dimensional elasticity 
theory. The practical construction of the above-mentioned coordinate 
system is a fairly complex problem. At the same time, the differential 
equation of the boundary value problem in whose solutions the minimum of 
the functionals is sought, can be considered as a linear constraint in 
the problem of minimizing the Trefftz functionals. Then such a 
minimization problem with linear constraints can be reduced to the minimax 
problem of a certain Lagrangian (by using reciprocity theory). 

1. The notation in /2,3/ is used henceforth. Let Q, (u) be a generalized Trefftz 
functional of one of the fundamental boundary value problems of linear elasticity theory 
with the domain of definition 

D, (Q) = {U 5 It',* (G) \du E L, (G).dn = li} 

which can be extended as follows: 

Here UED,(@) is the generalized solution of the equilibrium equation -411 = k' in the 

*Prikl.i%tem.bWhar;.,49,2,292-298,1985 
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domain of the elastic medium Gi E, with boundary S. 

It is evident that if UE D,(D). then also UE D*(m). i.e., D, (0) = D1 (0). Here and 

henceforth, u, v are vector functions, X is a given vector of the mass forces, W,l (0 W,* (6) 

are the standard notation for the Sobolev classes of functions, L,(G) is the Hilbert space 

of functions, square-summable in G 
It is well-known /l, 3/that the minimum of the Trefftr functionals is reached in the 

energy solution uO of the boundary value problem, and this minimum equals 0 (u(l) = I &I If, 

where 1. 1 is the energy norm (i.e., au is an element realizing the minimum of the energy 

functional of the boundary value problem /l/J. 
The linear constraint Au = K of the problem of finding inf (0 (u) for uE D, (0) can be 

reduced by using the Lagrange multiplier method /5, 6/. We define the set of such vectors 
5.~ L, (G) such that 

Then the problem of determining inf@ (u) for u E D, (0) reduces to an equivalent problem 
(see Sec.2) of determining 

which is later called direct. Therefore, the function (Lagrangian) 

L \u, J.) = CL, (u) - 2 5 i. (Au - K) dG: W,* (G, >: L? (G) --. R 
G 

has been defined. 
The problem of finding 

sup inf L(u, 1) 
i.fL,tG) UEIV,‘(G) 

(1.2) 

is dual to problem (1.1). Below (Sec.2) the existence is proved for the saddle point {aO, i.,)~ 
U',?(G) x L,,(G) of the Lagrangian L(u. Z.).‘one of whose arguments is uO. 

From the variational equations that express the necessity and sufficiency of the conditions 
that two partial derivatives of the function L(u, i.)vanish at the saddle point {uO. &} , we 
obtain 

NJ(//,, L.) - 2 ~;.,.hdG= 0, Vr f 11’~~ (Gj (1.3) 

~j.(.h,,~K)dG=O. l-7. : Lj (G) (1.4) 

An interpretation of the Lagrange multiplier i., can be obtained from (1.3). To do this, 
we use the expressions of the bilinear functionals CD, (u. L‘) of the corresponding fundamental 
boundary value problems /3/: the first (i = i), second (i = 2), and third (i = 3) 

CD'1 (u, v)= I (U. V) 7 :! (0. L')r :.> 

02 (u, c) = I(u, V) I +(I.. t (ld))o s(l,i (c))0. s -- 

(4 t (a s - (UT t (UN0 s 

0’s (u, u) = z (u. t’) - + (L. t C(O)0 s. UT. t (2’))o. s, - (4 t (u))o s, - (v, 1 (U))o s: -- z(u, c): !. s, 

Here /3/ 

I@,@= 2 \tV(u,~.)dG 
G‘ 

W(u) is a positive-definite quadratic form in linear elasticity theory /1/,(,)o,s,and(,),,,9s are 

scalar products in the Hilbert spaces L,(S), W2’/s(S)(W2’~*(S) is the Sobolev-Slobodetskii space 

of traces on S), 0 is a certain fixed displacement vector, t(U) is a surface stress vector 
associated with the displacement vector u, and a is a certain positive constant. When the 
boundary conditions of the fundamental problems are satisfied uO(e = 0 for the first; t(aO)ls = (J 
for the second, S = S,US,, u0 Ia, = 0, f(u<,) 1% = 0 for the third, by using the Betti formula /l/ 
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2 jW(u,v)dG+f(v)ds=juAvdG 

we obtain the following equation for all the fundamental problems 

Oi (uO, u) = 1 ur,AvdG (i = 1,2,3), \Jv E Wtl (G) 
c 

Then it follows from (1.3) that 

5 uoAvdG = \ IxodvdG, Yv c U’22 (G) 
G c” 

Hence it follows that the Lagrange multiplier ?.D has the meaning of the elastic 
displacements vector a(,. 

2. The saddle point {~~.i.~) of the Lagrangian L(u,?.) is determined by the condition /5/ 

The function 

{u,, ho} on W12(G) 

L (U”. I) -< L (uo, I..) ’ L (u, h,). Yu E W,* (G), i. E L, (G) 

L (u, i.)defined on He,' (G) x L,(G)and taking finite values has a saddle point 

x &(G) if and only if C/5/, p. 172) 

Let us prove this relationship. From L (u. I.) = Q, (u) - 2ik (Au - K) dG for u = a0 and F'i. 

L (zig. Lo) = inf sup L(u,k)= sup inf L(u,A) . 
r.d&s uEw**(G) 

(2.1) 
UEW,~(GI ) d,(G) 

it follows that L (uO, isO) = 0, (u,) = 1 uO 1'. CI 

We establish by direct substitution that 

Indeed 

Therefore, we obtain what is required 

inf sup L(u, I) = inf 
LLEDr(Q)) 

UEli’,‘(G) >.EL,‘, UE&(@) I 
= "_inf*,a,(u)=Q)(uO)= Iucll* 

- 1 

We will also prove that 

For a certain fixed 1.~ L, (G) the solution ui. of the problem of determining infL (u. k) 

for u c M',2(G) is a solution of the equation grad, L (u;.. X) = 0 (see (1.3) 1, i.e. 

2a (u,. v) - 2 \ ?.AvdG = 0, Yv z Wz2(G). (2.2) 
L: 

It therefore follows that for L' = a>~ 

D(u,)= \LAu,dG, klzL~?(G). 
G 

We evaluate the lower bound of L (a, i.) (for fixed k) 

L(Ui.,?.)=@(v>.)- 2 si.(.h -K)dG= Si.Au,.dG- 2 jk(Au; -K)dG+ j.Av,dG T 2 ShKdG. 
‘ G (r L 

Then the dual problem of (1.2) reduces to the minimization problem 

(2.3) 

where ui. is determined from (2.2). 

If a;. = uO and i. = h, = a0 (see Sec.11, then the expression 
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j u,.4uodG -- 2 1 uoKdG = - 1 u&,dG = .-. 1 uo 1’ 

G 6 

is an energy functional (/l/, p. 90) defined on the elastic displacments vector. We therefore 

also obtain from (2.3) that 
sup infL (u, h) = 1 Ua I2 
i. U 

(see also /6/,pp.37, 42). Therefore, the relationship (2.1) is proved. 
It follows from (1.4) that the argument u0 of the saddle point (the element minimizing 

the generalized Trefftz functionalQ,(u))satisfies the constraint of the problem A& = K. It 

can be confirmed that the function uh* the solution of (2.2) for each fixed i., also 

satisfies the constraint Au).= K. Indeed (see (1.4)) 

grad, L(u,,i.j=-2 S.4u,+dG T 2 1 KpdG=O, V,u z Lp 
G G 

(2.4) 

It hence follows that AU>. = K. 

Remark. Since the lower (upper) bound is achieved by virtue of what was proved in (2.1), 
then inI(sup) can be replaced in (2.1) by min (max). 

Therefore the problem of finding the minimum of generalized Trefftz functionals in 
solutions of the equilibrium equation of an elastic medium reduces to solving an equivalent 
problem resulting from the dual formulation of the problem on the maximin of the Lagrangian. 
The equivalent problem reduces to solving the variational equations (2.2) and (2.4). The 
efficiency of the approach elucidated is, from the viewpoint of solving boundary value problems, 
that in constructing the solutions of (2.2) and (2.4) constraints are not imposed on the basis 
functions in the sense of satisfying boundary conditions (which are satisfied automatically 
upon minimizing the Treffts functionals /l/) and the equilibrium equation in the domain. 

3. We elucidate as possible algorithm to search for the saddle point of the Lagrangian 
L (u. i.). The algorithm is based on using (2.2) and (2.4). 

Let {(cl)fZ," be a system of fairly smooth functions (for the validity of the constructions 

presented above it is evidently sufficient that the functions (Fi belong to the class II-,'tG)) 

Later , completeness of the system {cl,} is required only in L, (G) (i.e., in the sense of 

czjvergencein themean) for the convergence of the approximate solution. In addition to the 
above, no other constraints are imposed on the function $. in the domain G or on the boundary 
s. 

We form two sequences of linear combinations of linearly independent functions cfJ 

k 11 

Uk= z a,cE,- A,= 2 bjc> (3.1) 
i=l j=l 

(in particular, there can be k = n). where ai.bj are constants to be determined, 

Obviously, Eq.(2.2) is also satisfied for all functions L';:E R+,'(G)of the form 

where a,, are arbitrary. Then the following relationship holds: 

a)(ui.ym)- [i..h,.,dG=O. VT,,,, m=l,Z ,..., k . 
L: 

(3.2) 

For each fixed i. = i., an approximate solution of the form uk for (3.2) is written in the 
form 

where the dependence (Cjm are certain numbers, see below) 

a, -+ .f b,c, (i= 1 ( 2,. . . , k) 
j=l 

is determined from the system of linear equations 
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Similarly, (2.4) is also satisfied for all functions CUE J!,,(G) of the form 

Pn =;f; Blcrl 

where p, are arbitrary. Then we have 

1 Au,@G- 1 h'v,dG=O, Vvl, 1= 1,2,...,n 
G G 

(3.3) 

(3.4) 

For the approximations 

u hn =Xg ai tj$ b,c,)(F, 

we obtain from (3.4) a system of linear equations to determine b, 

jj ai@ b,c,rn)j~~w~~G - jh’sidG=O, 1=17 ,_).... n (3.5) 

Thus, (3.3) and (3.5) jointly comprise a system of linear equations to determine the 
constants a, and b, inthe expansion (3.1) determining the approximate value of the saddle 

point of the Lagrangian L(u, I.). 
Here the matrix @ (q,. cc,) of the system (3.3) to determine the dependence 

0, - 5 b,c:, (i= 1,2....,k) 
J=l 

is symmetric and positive-definite by virtue of the estimate (see /3/) 

Q, (UJ > c / Uh ll:v*yG,, c>o (3.6) 

(the dependence mentioned will evidently be linear). The system of Eqs.(3.5) is also 
solvable uniquely because of the positive-definiteness of the operator A, that results from 
the equality (see (2.2) for C= u,.) 

[ ;..4u;dG= 0(u,) 
i 

and the estimate (3.6). 
Let the approximate solution (3.1) be defined by one approximation {u,.;~,). Then we 

obtain values of the constants from (3.3) and (3.5): 

\ q/‘q,>dG s KvidG.Q (4,. qrn) 
a,=b ” 

’ U’(fT,. T,,.) 
= b,c _/,,. b. = ’ 

\ .%,p,dG. [ AT,T;~G 

It is hence seen that the constants 
i G 

are outwardiy identical to the coefficients in the approximate "Ritz" solution of the problem 

of minimizing the energy functional of elasticity theory boundary value problems /l/. If a 

system of coordinate functions, orthonormalized "with respect to energy" for the second 
boundary value problem of elasticity theory /l/ is taken as the system {IJ~);ZT (in this case 

the functions v, are also not subject to any constraints on S), then there will be the 
relationship 

II, i=l 
i -4qiq,dG= (0 
;; 

, if1 

and the algorithm to find the constants ai. bj simplifies significantly. 

4, We will now use the proposed algorithm to find the saddle point of the Lagrangian 
L (u. k) approximately. To do this it is necessary to show that {ur. i.,,)- {Us. i.,,) as k. n-+ y: 

Since we have grad,L (u,.i,,) = 0 at the saddle point {~,,i.~), then for L'= a- ~0 (and for pi= 

u - u,.) we obtain the two respective equalities from (1.3) 
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@(u,,u -uO)= hOA(u -ug) dG, S VUE Wsz(G) 

Q)(z+,u-uk)= "s 1,A(u--k)dG, VurWt2(G) 
G 

From the first equation for u = u,and from the second for IL = u,, by subtracting one from 
the other we obtain 

@(n~-uk.ug-uk)= \(ho--&4(uo--ur) dG. 
c' 

Using the estimate (3.6) for the left side of this equality, and the Cauchy inequality 
for the right side, we obtain 

The estimate from the imbedding theorem W,l (G)c L:(G) is used here. 
Summarizing, the following inequality holds 

11 UO - uk ihV,YG) 2 + I/ Lo - li, /iL(cj 

from which it follows that if the condition 11 i., - knli4,cj+ 0 is satisfied as n--t DC, then 

the convergence 11 u0 - u~.((~~,~(a~- 0 also holds as k-, m. Therefore, the foundation of the 

algorithm reduces to proving that the sequence of approximations (k,,) minimizes the functional 

F(X) for which (2.4) is the Euler-Lagrange equation (by virtue of /l/,p.367 the sequence 

{bjTj)!zf is complete in L2(G) since completeness of {yj) in L,(G) is assumed). 

For u;.= u (L) the functional 

F(?.)= S?.Au,dG -2 [hKdG, KE L,(G) 
G c: 

is a quadratic functional of the vector i. with positive-definite quadratic form 

1 %.4u. dG 
c 

(by virtue of the equality SaAu,dG=@(u,) and the estimate (3.6)), which for the discretization 

described above 
G 

An = ji; b,(r, 

is a quadratic form of the coefficients bj. Then the sequence of approximations Ii.,,) in 

which the coefficients b, are the solution of a system of linear equations obtained from 
the condition 

dF (i.,)'db, = 0 0' = 1, 2, . . ., n) 

is minimizing for the functional r(i.)!i.e., lim F 6,) = F Go,) as n--, 03 (/l/,p.98). Therefore, 
the sequence @.,} converges such that /Ii., - &,IJL,(G~- 0 as R--* 00, which also means that (1 u"- 

111 IlW“CG, -, 0 as k-.~. 
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